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DIVIDE-AND-CONQUER 

Approach 
1. Divide instance of problem into two or more smaller instances  
2. Solve smaller instances recursively 
3. Obtain solution to original (larger) instance by combining these solutions  

 

 
 

EXAMPLES 

• Sorting: mergesort and quicksort 
• Binary tree traversals 
• Multiplication of large integers 
• Matrix multiplication: Strassen’s algorithm 
• Closest-pair and convex-hull algorithms 
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MERGESORT 

Example 

 
 
Algorithm 

• Split array A[0..n-1] in two about equal halves and make copies of each half  in 
arrays B and C 

• Sort arrays B and C recursively 
• Merge sorted arrays B and C into array A as follows: 
− Repeat the following until no elements remain in one of the arrays: 

 compare the first elements in the remaining unprocessed portions of 
the arrays 

 copy the smaller of the two into A, while incrementing the index 
indicating the unprocessed portion of that array  

− Once all elements in one of the arrays are processed, copy the remaining 
unprocessed elements from the other array into A. 

 
  

8  3  2  9  7  1  5  4

8  3  2  9 7  1  5  4

8  3  2  9 7 1 5  4

8 3 2 9 7 1 5 4

3  8 2  9 1  7 4  5

2  3  8  9 1  4  5  7

1  2  3  4  5  7  8   9
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Mergesort complexity 
• Let size n = 2k, basic operation = comparison  
• C(n) = cost of sorting n elements 
• Recurrence: 

k=0: C(1) = 0   k=1: C(2) = 1 
C(n) = 2C(n/2) + CostMerge(n) 
 CostMergebest(n) = n/2 
 CostMergeworst(n) = n-1 
Cbest (n) = 2 Cbest(n/2) + n/2 
Cworst (n) = 2 Cworst (n/2) + n -1 

Best Case 
 C(n) = C(2k)   = 2C(2k-1) + 2k-1 
   = 2 [2C(2k-2) +2k-2] + 2k-1 
   = 22C(2k-2) + 2k-1 + 2k-1 
   = 22 [2C(2k-3) + 2k-3] + 2k-1 + 2k-1 
   = 23C(2k-3) + 22. 2k-3 + 2k-1 + 2k-1 
   = 23C(2k-3) + 3. 2k-1 
  =   … = 2kC(2k-k) + k. 2k-1 
   = k. 2k-1 = (n/2) log2n ∈ Θ(n log2n) 
Worst Case 
 C(n) = C(2k)   = 2C(2k-1) + 2k - 1 
    = 2 [2C(2k-2) + 2k-1 - 1] + 2k - 1 
    = 22C(2k-2) + 2. 2k-1 - 2 + 2k – 1 
    =22C(2k-2) + 2k + 2k - 2 - 1 
    = 22 [2C(2k-3) + 2k-2 – 1] + 2k + 2k - 21 – 20 

    = 23C(2k-3) + 22. 2k-2 – 22 + 2k + 2k - 21 – 20 
    = 23C(2k-3) + 2k + 2k + 2k – 22 - 21 – 20 
    = 23C(2k-3) + 3. 2k – ∑ 2𝑖3−1

𝑖=0  
   =  … =2k C(2k-k) + k. 2k – ∑ 2𝑖𝑘−1

𝑖=0  
   = k. 2k – (2k – 1) = (k-1). 2k + 1 = n log2n – n + 1 ∈ Θ(n log2n) 
Generally  
• Number of comparisons in the worst case is close to theoretical minimum for 

comparison-based sorting:    log2 n!   ≈    n log2 n  - 1.44n 
• Space requirement: Θ(n) (not in-place) 
• Can be implemented without recursion (bottom-up) (i.e. 2 by 2, then 4 by 4, then 

8 by 8, etc.) 
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GENERAL DIVIDE AND CONQUER RECURRENCE 

General Recurrence 
Divide n into b equal parts and solve a of them 

T(n) = aT(n/b) + f (n)   where f(n) ∈ Θ(nd),   d ≥ 0 
f(n) = cost of dividing n into b instances of size n/b and combining their 
solutions 

Master Theorem 
If a < bd,    T(n) ∈ Θ(nd)  
If a = bd,     T(n) ∈ Θ(nd log n)  
If a > bd,     T(n) ∈ Θ(nlog 

b 
a ) 

Applying Master Theorem to Mergesort 
•  Cbest (n) = 2 Cbest (n/2) + n/2  
•  Cworst (n) = 2 Cworst (n/2) + n -1  

•   a=2, b=2, d=1, a = bd,  C(n) ∈ Θ(nd log n) = Θ(n log n) 

BINARY TREE ALGORITHMS 

 
 
Traversal: 
Algorithm Inorder(T) 
if T ≠  ∅            
    Inorder(Tleft)                                            
    print(root of T)                                    
    Inorder(Tright) 
  

 
 
Height h(T): 
h(∅) = -1 
h(T) = max{h(TL), h(TR)} + 1  if T ≠ ∅ 
 
Applying Master Theorem to Binary Tree Algorithms 
 T (n) = 2 T (n/2) + 1  
 a=2, b=2, d=0, a > bd,  T(n) ∈ Θ(nlog 

b 
a ) = Θ(nlog

 2
 2 ) = Θ(n)    

 
  

T TL R
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MULTIPLICATION OF LARGE INTEGERS 

Brute Force 
 
Consider the problem of multiplying two (large) n-digit integers represented by 
arrays of their digits such as: 
 
A = 12345678901357986429   B = 87654321284820912836 
 
The grade-school (brute-force) algorithm:  
  a1  a2 …  an 

                 b1  b2 …  bn 

     (d10) d11d12 … d1n 
         (d20) d21d22 … d2n 
        … … … … … … …  
(dn0) dn1dn2 … dnn  
  
Efficiency: n2 one-digit multiplications  
 
Divide and Conquer 
 
A small example: 
A ∗ B where A = 2135 and B = 4014 
A = (21·102 + 35),  B = (40 ·102 + 14) 
 
So, A ∗ B = (21 ·102 + 35) ∗ (40 ·102 + 14)  
      = 21 ∗ 40 ·104  + (21 ∗ 14 + 35 ∗ 40) ·102 + 35 ∗ 14 
 
In general, if A = A1A2 and B = B1B2   (where A and B are n-digit,  
A1, A2, B1, B2 are n/2-digit numbers), 
 
A ∗ B = A1 ∗ B1·10n  + (A1 ∗ B2 + A2 ∗ B1) ·10n/2 + A2 ∗ B2 
 
Master Theorem 
Recurrence for the number of one-digit multiplications M(n):  
 M(n) = 4M(n/2),   M(1) = 1  
a=4, b=2, d=0, a > bd,  T(n) ∈ Θ(nlog b a ) = Θ(nlog 2 4 ) = Θ(n2)   
  



CPS 616 DIVIDE-AND-CONQUER   6 - 6 
 
 
CLOSEST PAIR 

• Step 1  Divide the points given into two subsets Pl and Pr by a vertical line x = m 
so that half the points lie to the left or on the line and half the points lie to the 
right or on the line. (m= median of all the x coordinates) 

 
• Step 2  Find recursively the closest pairs dl, dr for the left and right subsets. 
• Step 3   Set d = min{dl, dr} 
 
We can now limit our attention to the points in the symmetric vertical strip S of 
width 2d as possible closest pair. (The points are stored and processed in 
increasing order of their y coordinates.) 
• Step 4   Scan the points in the vertical strip S from the lowest up.   

For every point p(x,y) in the strip, inspect points in the strip that may be closer to 
p than d.  It has been proven that  
There can be no more than 5 such points following p on the strip list! 

Master Theorem 
T(n) = 2T(n/2) + M(n),  where M(n) ∈ O(n)  
a = 2, b = 2, d = 1,  a = bd,  T(n) ∈ O(n log n) 

x = m

d l dr

d d


	DIVIDE-AND-CONQUER
	Approach
	1. Divide instance of problem into two or more smaller instances
	2. Solve smaller instances recursively
	3. Obtain solution to original (larger) instance by combining these solutions

	/
	EXAMPLES
	• Sorting: mergesort and quicksort
	• Binary tree traversals
	• Multiplication of large integers
	• Matrix multiplication: Strassen’s algorithm
	• Closest-pair and convex-hull algorithms

	MERGESORT
	Example
	Mergesort complexity
	• Let size n = 2k, basic operation = comparison
	• C(n) = cost of sorting n elements
	• Recurrence:
	k=0: C(1) = 0   k=1: C(2) = 1
	C(n) = 2C(n/2) + CostMerge(n)
	 CostMergebest(n) = n/2
	 CostMergeworst(n) = n-1

	Cbest (n) = 2 Cbest(n/2) + n/2
	Cworst (n) = 2 Cworst (n/2) + n -1


	Best Case
	Worst Case
	Generally
	• Number of comparisons in the worst case is close to theoretical minimum for comparison-based sorting:    (log2 n!(   ≈    n log2 n  - 1.44n
	• Space requirement: Θ(n) (not in-place)
	• Can be implemented without recursion (bottom-up) (i.e. 2 by 2, then 4 by 4, then 8 by 8, etc.)


	• Split array A[0..n-1] in two about equal halves and make copies of each half  in arrays B and C
	• Sort arrays B and C recursively
	• Merge sorted arrays B and C into array A as follows:
	 Repeat the following until no elements remain in one of the arrays:
	 compare the first elements in the remaining unprocessed portions of the arrays
	 copy the smaller of the two into A, while incrementing the index indicating the unprocessed portion of that array 

	 Once all elements in one of the arrays are processed, copy the remaining unprocessed elements from the other array into A.

	GENERAL DIVIDE AND CONQUER RECURRENCE
	General Recurrence
	Divide n into b equal parts and solve a of them
	T(n) = aT(n/b) + f (n)   where f(n) ∈ ((nd),   d ≥ 0
	f(n) = cost of dividing n into b instances of size n/b and combining their solutions

	Master Theorem
	If a < bd,    T(n) ∈ ((nd)
	If a = bd,     T(n) ∈ ((nd log n)
	If a > bd,     T(n) ∈ ((nlog b a )

	Applying Master Theorem to Mergesort
	•  Cbest (n) = 2 Cbest (n/2) + n/2
	•  Cworst (n) = 2 Cworst (n/2) + n -1
	•   a=2, b=2, d=1, a = bd,  C(n) ∈ ((nd log n) = ((n log n)


	BINARY TREE ALGORITHMS
	Applying Master Theorem to Binary Tree Algorithms

	MULTIPLICATION OF LARGE INTEGERS
	Brute Force
	Divide and Conquer
	Master Theorem

	CLOSEST PAIR
	• Step 1  Divide the points given into two subsets Pl and Pr by a vertical line x = m so that half the points lie to the left or on the line and half the points lie to the right or on the line. (m= median of all the x coordinates)
	• Step 2  Find recursively the closest pairs dl, dr for the left and right subsets.
	• Step 3   Set d = min{dl, dr}
	• Step 4   Scan the points in the vertical strip S from the lowest up.
	For every point p(x,y) in the strip, inspect points in the strip that may be closer to p than d.  It has been proven that
	There can be no more than 5 such points following p on the strip list!
	Master Theorem


