
CPS 616 DIVIDE-AND-CONQUER 6 - 1

DIVIDE-AND-CONQUER

Approach
1. Divide instance of problem into two or more smaller instances
2. Solve smaller instances recursively
3. Obtain solution to original (larger) instance by combining these solutions

EXAMPLES

• Sorting: mergesort and quicksort
• Binary tree traversals
• Multiplication of large integers
• Matrix multiplication: Strassen’s algorithm
• Closest-pair and convex-hull algorithms

CPS 616 DIVIDE-AND-CONQUER 6 - 2

MERGESORT

Example

Algorithm

• Split array A[0..n-1] in two about equal halves and make copies of each half in
arrays B and C

• Sort arrays B and C recursively
• Merge sorted arrays B and C into array A as follows:
− Repeat the following until no elements remain in one of the arrays:

 compare the first elements in the remaining unprocessed portions of
the arrays

 copy the smaller of the two into A, while incrementing the index
indicating the unprocessed portion of that array

− Once all elements in one of the arrays are processed, copy the remaining
unprocessed elements from the other array into A.

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

CPS 616 DIVIDE-AND-CONQUER 6 - 3

Mergesort complexity
• Let size n = 2k, basic operation = comparison
• C(n) = cost of sorting n elements
• Recurrence:

k=0: C(1) = 0 k=1: C(2) = 1
C(n) = 2C(n/2) + CostMerge(n)
 CostMergebest(n) = n/2
 CostMergeworst(n) = n-1
Cbest (n) = 2 Cbest(n/2) + n/2
Cworst (n) = 2 Cworst (n/2) + n -1

Best Case
 C(n) = C(2k) = 2C(2k-1) + 2k-1
 = 2 [2C(2k-2) +2k-2] + 2k-1
 = 22C(2k-2) + 2k-1 + 2k-1
 = 22 [2C(2k-3) + 2k-3] + 2k-1 + 2k-1
 = 23C(2k-3) + 22. 2k-3 + 2k-1 + 2k-1
 = 23C(2k-3) + 3. 2k-1
 = … = 2kC(2k-k) + k. 2k-1
 = k. 2k-1 = (n/2) log2n ∈ Θ(n log2n)
Worst Case
 C(n) = C(2k) = 2C(2k-1) + 2k - 1
 = 2 [2C(2k-2) + 2k-1 - 1] + 2k - 1
 = 22C(2k-2) + 2. 2k-1 - 2 + 2k – 1
 =22C(2k-2) + 2k + 2k - 2 - 1
 = 22 [2C(2k-3) + 2k-2 – 1] + 2k + 2k - 21 – 20

 = 23C(2k-3) + 22. 2k-2 – 22 + 2k + 2k - 21 – 20
 = 23C(2k-3) + 2k + 2k + 2k – 22 - 21 – 20
 = 23C(2k-3) + 3. 2k – ∑ 2𝑖3−1

𝑖=0
 = … =2k C(2k-k) + k. 2k – ∑ 2𝑖𝑘−1

𝑖=0
 = k. 2k – (2k – 1) = (k-1). 2k + 1 = n log2n – n + 1 ∈ Θ(n log2n)
Generally
• Number of comparisons in the worst case is close to theoretical minimum for

comparison-based sorting: log2 n! ≈ n log2 n - 1.44n
• Space requirement: Θ(n) (not in-place)
• Can be implemented without recursion (bottom-up) (i.e. 2 by 2, then 4 by 4, then

8 by 8, etc.)

CPS 616 DIVIDE-AND-CONQUER 6 - 4

GENERAL DIVIDE AND CONQUER RECURRENCE

General Recurrence
Divide n into b equal parts and solve a of them

T(n) = aT(n/b) + f (n) where f(n) ∈ Θ(nd), d ≥ 0
f(n) = cost of dividing n into b instances of size n/b and combining their
solutions

Master Theorem
If a < bd, T(n) ∈ Θ(nd)
If a = bd, T(n) ∈ Θ(nd log n)
If a > bd, T(n) ∈ Θ(nlog

b
a)

Applying Master Theorem to Mergesort
• Cbest (n) = 2 Cbest (n/2) + n/2
• Cworst (n) = 2 Cworst (n/2) + n -1

• a=2, b=2, d=1, a = bd, C(n) ∈ Θ(nd log n) = Θ(n log n)

BINARY TREE ALGORITHMS

Traversal:
Algorithm Inorder(T)
if T ≠ ∅
 Inorder(Tleft)
 print(root of T)
 Inorder(Tright)

Height h(T):
h(∅) = -1
h(T) = max{h(TL), h(TR)} + 1 if T ≠ ∅

Applying Master Theorem to Binary Tree Algorithms
 T (n) = 2 T (n/2) + 1
 a=2, b=2, d=0, a > bd, T(n) ∈ Θ(nlog

b
a) = Θ(nlog

 2
 2) = Θ(n)

T TL R

CPS 616 DIVIDE-AND-CONQUER 6 - 5

MULTIPLICATION OF LARGE INTEGERS

Brute Force

Consider the problem of multiplying two (large) n-digit integers represented by
arrays of their digits such as:

A = 12345678901357986429 B = 87654321284820912836

The grade-school (brute-force) algorithm:
 a1 a2 … an

 b1 b2 … bn

 (d10) d11d12 … d1n
 (d20) d21d22 … d2n
 … … … … … … …
(dn0) dn1dn2 … dnn

Efficiency: n2 one-digit multiplications

Divide and Conquer

A small example:
A ∗ B where A = 2135 and B = 4014
A = (21·102 + 35), B = (40 ·102 + 14)

So, A ∗ B = (21 ·102 + 35) ∗ (40 ·102 + 14)
 = 21 ∗ 40 ·104 + (21 ∗ 14 + 35 ∗ 40) ·102 + 35 ∗ 14

In general, if A = A1A2 and B = B1B2 (where A and B are n-digit,
A1, A2, B1, B2 are n/2-digit numbers),

A ∗ B = A1 ∗ B1·10n + (A1 ∗ B2 + A2 ∗ B1) ·10n/2 + A2 ∗ B2

Master Theorem
Recurrence for the number of one-digit multiplications M(n):
 M(n) = 4M(n/2), M(1) = 1
a=4, b=2, d=0, a > bd, T(n) ∈ Θ(nlog b a) = Θ(nlog 2 4) = Θ(n2)

CPS 616 DIVIDE-AND-CONQUER 6 - 6

CLOSEST PAIR

• Step 1 Divide the points given into two subsets Pl and Pr by a vertical line x = m
so that half the points lie to the left or on the line and half the points lie to the
right or on the line. (m= median of all the x coordinates)

• Step 2 Find recursively the closest pairs dl, dr for the left and right subsets.
• Step 3 Set d = min{dl, dr}

We can now limit our attention to the points in the symmetric vertical strip S of
width 2d as possible closest pair. (The points are stored and processed in
increasing order of their y coordinates.)
• Step 4 Scan the points in the vertical strip S from the lowest up.

For every point p(x,y) in the strip, inspect points in the strip that may be closer to
p than d. It has been proven that
There can be no more than 5 such points following p on the strip list!

Master Theorem
T(n) = 2T(n/2) + M(n), where M(n) ∈ O(n)
a = 2, b = 2, d = 1, a = bd, T(n) ∈ O(n log n)

x = m

d l dr

d d

	DIVIDE-AND-CONQUER
	Approach
	1. Divide instance of problem into two or more smaller instances
	2. Solve smaller instances recursively
	3. Obtain solution to original (larger) instance by combining these solutions

	/
	EXAMPLES
	• Sorting: mergesort and quicksort
	• Binary tree traversals
	• Multiplication of large integers
	• Matrix multiplication: Strassen’s algorithm
	• Closest-pair and convex-hull algorithms

	MERGESORT
	Example
	Mergesort complexity
	• Let size n = 2k, basic operation = comparison
	• C(n) = cost of sorting n elements
	• Recurrence:
	k=0: C(1) = 0 k=1: C(2) = 1
	C(n) = 2C(n/2) + CostMerge(n)
	 CostMergebest(n) = n/2
	 CostMergeworst(n) = n-1

	Cbest (n) = 2 Cbest(n/2) + n/2
	Cworst (n) = 2 Cworst (n/2) + n -1

	Best Case
	Worst Case
	Generally
	• Number of comparisons in the worst case is close to theoretical minimum for comparison-based sorting: (log2 n!(≈ n log2 n - 1.44n
	• Space requirement: Θ(n) (not in-place)
	• Can be implemented without recursion (bottom-up) (i.e. 2 by 2, then 4 by 4, then 8 by 8, etc.)

	• Split array A[0..n-1] in two about equal halves and make copies of each half in arrays B and C
	• Sort arrays B and C recursively
	• Merge sorted arrays B and C into array A as follows:
	 Repeat the following until no elements remain in one of the arrays:
	 compare the first elements in the remaining unprocessed portions of the arrays
	 copy the smaller of the two into A, while incrementing the index indicating the unprocessed portion of that array

	 Once all elements in one of the arrays are processed, copy the remaining unprocessed elements from the other array into A.

	GENERAL DIVIDE AND CONQUER RECURRENCE
	General Recurrence
	Divide n into b equal parts and solve a of them
	T(n) = aT(n/b) + f (n) where f(n) ∈ ((nd), d ≥ 0
	f(n) = cost of dividing n into b instances of size n/b and combining their solutions

	Master Theorem
	If a < bd, T(n) ∈ ((nd)
	If a = bd, T(n) ∈ ((nd log n)
	If a > bd, T(n) ∈ ((nlog b a)

	Applying Master Theorem to Mergesort
	• Cbest (n) = 2 Cbest (n/2) + n/2
	• Cworst (n) = 2 Cworst (n/2) + n -1
	• a=2, b=2, d=1, a = bd, C(n) ∈ ((nd log n) = ((n log n)

	BINARY TREE ALGORITHMS
	Applying Master Theorem to Binary Tree Algorithms

	MULTIPLICATION OF LARGE INTEGERS
	Brute Force
	Divide and Conquer
	Master Theorem

	CLOSEST PAIR
	• Step 1 Divide the points given into two subsets Pl and Pr by a vertical line x = m so that half the points lie to the left or on the line and half the points lie to the right or on the line. (m= median of all the x coordinates)
	• Step 2 Find recursively the closest pairs dl, dr for the left and right subsets.
	• Step 3 Set d = min{dl, dr}
	• Step 4 Scan the points in the vertical strip S from the lowest up.
	For every point p(x,y) in the strip, inspect points in the strip that may be closer to p than d. It has been proven that
	There can be no more than 5 such points following p on the strip list!
	Master Theorem

