CPS 616

DIVIDE-AND-CONQUER

Approach
1. Divide instance of problem into two or more smaller instances

2. Solve smaller instances recursively

DIVIDE-AND-CONQUER

3. Obtain solution to original (larger) instance by combining these solutions

a problem of size n

subproblem 1
of size n/2

a solution to
subproblem 1

subproblem 2
of size n/2

a solution to
subproblem 2

a solution to
the original problem

EXAMPLES

Sorting: mergesort and quicksort

Binary tree traversals

Multiplication of large integers

Matrix multiplication: Strassen’s algorithm
Closest-pair and convex-hull algorithms

=

ANV
/\ /\ /\ /\
VARVARVARY;
N

L

» Splitarray A[0..n-1] in two about equal halves and make copies of each half in
arrays B and C

» Sort arrays B and C recursively

» Merge sorted arrays B and C into array A as follows:

Repeat the following until no elements remain in one of the arrays:

= compare the first elements in the remaining unprocessed portions of

the arrays

= copy the smaller of the two into A, while incrementing the index

indicating the unprocessed portion of that array
Once all elements in one of the arrays are processed, copy the remaining
unprocessed elements from the other array into A.

CPS 616 DIVIDE-AND-CONQUER 6-3

Mergesort complexity

« Let size n = 2 basic operation = comparison
* C(n) = cost of sorting n elements

e Recurrence:
k=0:C(1)=0 k=1: C(2)=1
C(n) = 2C(n/2) + CostMerge(n)
= CostMergepest(n) = n/2
= COStMergeworst(n) =n-1
Chest (N) = 2 Cpest(n/2) + n/2
Cuorst (N) =2 Cuorst (N/2) +n -1

Best Case
C(n) = C(2Y =2c(@Y + 2!

=2 [2C(2"%) +2°7] + 2
— 22C(2k-2) + 2k-1 + 2k-1
— 22 [2C(2k-3) + 2k-3] + 2k-1 + 2k-l
— 23C(2k-3) + 3 2k-l

= ... =2c(@"*) + k. 2!
= k. 2" = (n/2) log,n € O(n log,n)

Worst Case
C(n)=CR") =2c@“"+2"-1

=2[2C(2“%) + 2 - 1] + 2“- 1
=2°C(2%) +2. 2" -2+ 21
=2°C(2%) +2¢+2-2-1
=22 [2C(2%) + 2? — 1] + 2"+ 2¢- 21 - 2°
=2°C(2) +22. 20 - 22 + 2K+ 24 21 - 2°
— 23C(2k-3) oKy oKy ok 92 _ ol 90
=2°C(2*%) +3. 2 -y L2t

= ... =2°C(2"M + k. 22X - pk L2

=k. 2= (2~ 1) = (k-1). 2+ 1 = n log,n — n + 1 € O(n log,n)

Generally
* Number of comparisons in the worst case is close to theoretical minimum for
comparison-based sorting: [log2n!] =~ nlog2n - 1.44n

» Space requirement: ®(n) (not in-place)

» Can be implemented without recursion (bottom-up) (i.e. 2 by 2, then 4 by 4, then
8 by 8, etc.)

CPS 616 DIVIDE-AND-CONQUER

GENERAL DIVIDE AND CONQUER RECURRENCE
General Recurrence

Divide n into b equal parts and solve a of them
T(n) =aT(n/b) + f (n) where f(n) e ®(n%), d=>0

f(n) = cost of dividing n into b instances of size n/b and combining their
solutions

Master Theorem
Ifa<b? T(n)e®N
Ifa=b" T(n) € ®(n®log n)
Ifa>b% T(n) e O®N*,?)

Applying Master Theorem to Mergesort

. Chest (N) =2 Cpest (N/2) + n/2

. Cuworst (N) =2 Cyorst (N/2) +n -1

. a=2,b=2,d=1,a=b" C(n) € ®n®log n) = O(n log n)

BINARY TREE ALGORITHMS

Traversal:

Algorithm Inorder(T)

IfT= &
Inorder(T es)
print(root of T)
Inorder(Tign)

Height h(T):
(D) = -1
h(T) = max{h(T), h(TR)} + 1 if T= &

Applying Master Theorem to Binary Tree Algorithms
TN)=2T(M/2)+1
a=2,b=2,d=0,a>b", T(n) € ©(n',?) = O(N',?) = O(n)

CPS 616 DIVIDE-AND-CONQUER 6 -

MULTIPLICATION OF LARGE INTEGERS
Brute Force

Consider the problem of multiplying two (large) n-digit integers represented by
arrays of their digits such as:

A =12345678901357986429 B = 87654321284820912836
The grade-school (brute-force) algorithm:

d; d>... d,

by by... b,

(dlo) dlld12 v dln
(dZO) d21d22 T d2n

(an) dnldnz dnn
Efficiency: nzone-digit multiplications

Divide and Conquer

A small example:
A * B where A =2135and B = 4014
A =(21-10° + 35), B = (40 -10° + 14)

So, A * B = (21 -10° + 35) * (40 -10% + 14)
=21 % 40 -10" + (21 * 14 + 35 = 40) -10% + 35 * 14

In general, if A=A;A,and B = B;B, (where A and B are n-digit,
A, A,, By, By are n/2-digit numbers),

AxB=A;*B;-10" + (A = By + Ay By) -10"2+ Ay B,

Master Theorem

Recurrence for the number of one-digit multiplications M(n):
M(n) =4M(n/2), M(1)=1

a=4,b=2,d=0,a > b", T(n) e O(N'*"?) = O(N'??*) = O(n?)

CPS 616 DIVIDE-AND-CONQUER 6-6

CLOSEST PAIR

» Step 1 Divide the points given into two subsets P, and P, by a vertical line x =m
so that half the points lie to the left or on the line and half the points lie to the
right or on the line. (m= median of all the x coordinates)

X=m

O

d d

» Step 2 Find recursively the closest pairs d,, d; for the left and right subsets.
e Step 3 Setd=min{d, d;}

We can now limit our attention to the points in the symmetric vertical strip S of
width 2d as possible closest pair. (The points are stored and processed in
increasing order of their y coordinates.)

o Step 4 Scan the points in the vertical strip S from the lowest up.

For every point p(x,y) in the strip, inspect points in the strip that may be closer to
p than d. It has been proven that

There can be no more than 5 such points following p on the strip list!

Master Theorem
T(n) = 2T(n/2) + M(n), where M(n) € O(n)
a=2,b=2,d=1, a=b", T(n) e O(n log n)

	DIVIDE-AND-CONQUER
	Approach
	1. Divide instance of problem into two or more smaller instances
	2. Solve smaller instances recursively
	3. Obtain solution to original (larger) instance by combining these solutions

	/
	EXAMPLES
	• Sorting: mergesort and quicksort
	• Binary tree traversals
	• Multiplication of large integers
	• Matrix multiplication: Strassen’s algorithm
	• Closest-pair and convex-hull algorithms

	MERGESORT
	Example
	Mergesort complexity
	• Let size n = 2k, basic operation = comparison
	• C(n) = cost of sorting n elements
	• Recurrence:
	k=0: C(1) = 0 k=1: C(2) = 1
	C(n) = 2C(n/2) + CostMerge(n)
	 CostMergebest(n) = n/2
	 CostMergeworst(n) = n-1

	Cbest (n) = 2 Cbest(n/2) + n/2
	Cworst (n) = 2 Cworst (n/2) + n -1

	Best Case
	Worst Case
	Generally
	• Number of comparisons in the worst case is close to theoretical minimum for comparison-based sorting: (log2 n!(≈ n log2 n - 1.44n
	• Space requirement: Θ(n) (not in-place)
	• Can be implemented without recursion (bottom-up) (i.e. 2 by 2, then 4 by 4, then 8 by 8, etc.)

	• Split array A[0..n-1] in two about equal halves and make copies of each half in arrays B and C
	• Sort arrays B and C recursively
	• Merge sorted arrays B and C into array A as follows:
	 Repeat the following until no elements remain in one of the arrays:
	 compare the first elements in the remaining unprocessed portions of the arrays
	 copy the smaller of the two into A, while incrementing the index indicating the unprocessed portion of that array

	 Once all elements in one of the arrays are processed, copy the remaining unprocessed elements from the other array into A.

	GENERAL DIVIDE AND CONQUER RECURRENCE
	General Recurrence
	Divide n into b equal parts and solve a of them
	T(n) = aT(n/b) + f (n) where f(n) ∈ ((nd), d ≥ 0
	f(n) = cost of dividing n into b instances of size n/b and combining their solutions

	Master Theorem
	If a < bd, T(n) ∈ ((nd)
	If a = bd, T(n) ∈ ((nd log n)
	If a > bd, T(n) ∈ ((nlog b a)

	Applying Master Theorem to Mergesort
	• Cbest (n) = 2 Cbest (n/2) + n/2
	• Cworst (n) = 2 Cworst (n/2) + n -1
	• a=2, b=2, d=1, a = bd, C(n) ∈ ((nd log n) = ((n log n)

	BINARY TREE ALGORITHMS
	Applying Master Theorem to Binary Tree Algorithms

	MULTIPLICATION OF LARGE INTEGERS
	Brute Force
	Divide and Conquer
	Master Theorem

	CLOSEST PAIR
	• Step 1 Divide the points given into two subsets Pl and Pr by a vertical line x = m so that half the points lie to the left or on the line and half the points lie to the right or on the line. (m= median of all the x coordinates)
	• Step 2 Find recursively the closest pairs dl, dr for the left and right subsets.
	• Step 3 Set d = min{dl, dr}
	• Step 4 Scan the points in the vertical strip S from the lowest up.
	For every point p(x,y) in the strip, inspect points in the strip that may be closer to p than d. It has been proven that
	There can be no more than 5 such points following p on the strip list!
	Master Theorem

