DIVIDE-AND-CONQUER

Approach

1. Divide instance of problem into two or more smaller instances
2. Solve smaller instances recursively
3. Obtain solution to original (larger) instance by combining these solutions

EXAMPLES

- Sorting: mergesort and quicksort
- Binary tree traversals
- Multiplication of large integers
- Matrix multiplication: Strassen's algorithm
- Closest-pair and convex-hull algorithms

MERGESORT

Example

Algorithm

- Split array A[0..n-1] in two about equal halves and make copies of each half in arrays B and C
- Sort arrays B and C recursively
- Merge sorted arrays B and C into array A as follows:
- Repeat the following until no elements remain in one of the arrays:
- compare the first elements in the remaining unprocessed portions of the arrays
- copy the smaller of the two into A , while incrementing the index indicating the unprocessed portion of that array
- Once all elements in one of the arrays are processed, copy the remaining unprocessed elements from the other array into A.

Mergesort complexity

- Let size $\mathrm{n}=2^{\mathrm{k}}$, basic operation = comparison
- $\mathrm{C}(\mathrm{n})=$ cost of sorting n elements
- Recurrence:

$$
\begin{aligned}
& \mathrm{k}=0: \mathrm{C}(1)=0 \quad \mathrm{k}=1: \quad \mathrm{C}(2)=1 \\
& \mathrm{C}(\mathrm{n})=2 \mathrm{C}(\mathrm{n} / 2)+\operatorname{CostMerge}(\mathrm{n}) \\
& \quad \operatorname{CostMerge}_{\text {best }}(\mathrm{n})=n / 2 \\
& \text { CostMerge } \\
& \mathrm{C}_{\text {worst }}(n)=n-1 \\
& C_{\text {worst }}(n)=2 \mathrm{C}_{\text {best }}(n / 2)+n / 2 \\
& C_{\text {worst }}(n / 2)+n-1
\end{aligned}
$$

Best Case

$$
C(n)=C\left(2^{k}\right)=2 C\left(2^{k-1}\right)+2^{k-1}
$$

$$
=2\left[2 C\left(2^{k-2}\right)+2^{k-2}\right]+2^{k-1}
$$

$$
=2^{2} C\left(2^{k-2}\right)+2^{\mathrm{k}-1}+2^{\mathrm{k}-1}
$$

$$
=2^{2}\left[2 C\left(2^{k-3}\right)+2^{k-3}\right]+2^{k-1}+2^{k-1}
$$

$$
=2^{3} C\left(2^{k-3}\right)+2^{2} \cdot 2^{k-3}+2^{k-1}+2^{k-1}
$$

$$
=2^{3} C\left(2^{k-3}\right)+3.2^{k-1}
$$

$$
=\ldots=2^{\mathrm{k}} C\left(2^{\mathrm{k}-\mathrm{k}}\right)+\mathrm{k} \cdot 2^{\mathrm{k}-1}
$$

$$
=\mathrm{k} .2^{\mathrm{k}-1}=(\mathrm{n} / 2) \log _{2} \mathrm{n} \in \Theta\left(\mathrm{n} \log _{2} \mathrm{n}\right)
$$

Worst Case

Generally

- Number of comparisons in the worst case is close to theoretical minimum for comparison-based sorting: $\lceil\log 2 n!\rceil \approx n \log 2 n-1.44 n$
- Space requirement: $\Theta(n)$ (not in-place)
- Can be implemented without recursion (bottom-up) (i.e. 2 by 2, then 4 by 4 , then 8 by 8 , etc.)

$$
\begin{aligned}
& C(n)=C\left(2^{k}\right)=2 C\left(2^{k-1}\right)+2^{k}-1 \\
& =2\left[2 C\left(2^{k-2}\right)+2^{k-1}-1\right]+2^{k}-1 \\
& =2^{2} \mathrm{C}\left(2^{\mathrm{k}-2}\right)+2.2^{\mathrm{k}-1}-2+2^{\mathrm{k}}-1 \\
& =2^{2} C\left(2^{k-2}\right)+2^{k}+2^{k}-2-1 \\
& =2^{2}\left[2 \mathrm{C}\left(2^{\mathrm{k}-3}\right)+2^{\mathrm{k}-2}-1\right]+2^{\mathrm{k}}+2^{\mathrm{k}}-2^{1}-2^{0} \\
& =2^{3} C\left(2^{k-3}\right)+2^{2} \cdot 2^{k-2}-2^{2}+2^{k}+2^{k}-2^{1}-2^{0} \\
& =2^{3} C\left(2^{k-3}\right)+2^{k}+2^{k}+2^{k}-2^{2}-2^{1}-2^{0} \\
& =2^{3} \mathrm{C}\left(2^{\mathrm{k}-3}\right)+3.2^{\mathrm{k}}-\sum_{i=0}^{3-1} 2^{i} \\
& =\ldots=2^{\mathrm{k}} \mathrm{C}\left(2^{\mathrm{k}-\mathrm{k}}\right)+\mathrm{k} \cdot 2^{\mathrm{k}}-\sum_{i=0}^{k-1} 2^{i} \\
& =\mathrm{k} .2^{\mathrm{k}}-\left(2^{\mathrm{k}}-1\right)=(\mathrm{k}-1) .2^{\mathrm{k}}+1=\mathrm{n} \log _{2} \mathrm{n}-\mathrm{n}+1 \in \Theta\left(\mathrm{n} \log _{2} \mathrm{n}\right)
\end{aligned}
$$

GENERAL DIVIDE AND CONQUER RECURRENCE

General Recurrence

Divide n into b equal parts and solve a of them
$T(n)=a T(n / b)+f(n) \quad$ where $f(n) \in \Theta\left(n^{d}\right), d \geq 0$
$f(n)=$ cost of dividing n into b instances of size n / b and combining their solutions

Master Theorem

$$
\begin{array}{ll}
\text { If } \mathrm{a}<\mathrm{b}^{\mathrm{d}}, & \mathrm{~T}(\mathrm{n}) \in \Theta\left(\mathrm{n}^{\mathrm{d}}\right) \\
\text { If } \mathrm{a}=\mathrm{b}^{\mathrm{d}}, & \mathrm{~T}(\mathrm{n}) \in \Theta\left(\mathrm{n}^{\mathrm{d}} \log \mathrm{n}\right) \\
\text { If } \mathrm{a}>\mathrm{b}^{d}, & \mathrm{~T}(\mathrm{n}) \in \Theta\left(\mathrm{n}^{\log _{\mathrm{b}}{ }^{\mathrm{a}}}\right)
\end{array}
$$

Applying Master Theorem to Mergesort

- $C_{\text {best }}(n)=2 C_{\text {best }}(n / 2)+n / 2$
- $\mathrm{C}_{\text {worst }}(\mathrm{n})=2 \mathrm{C}_{\text {worst }}(\mathrm{n} / 2)+\mathrm{n}-1$
- $\quad a=2, b=2, d=1, a=b^{d}, C(n) \in \Theta\left(n^{d} \log n\right)=\Theta(n \log n)$

BINARY TREE ALGORITHMS

Traversal:
Algorithm Inorder(T)
if $\mathrm{T} \neq \varnothing$
Inorder $\left(\mathrm{T}_{\text {left }}\right)$
print(root of T)
Inorder $\left(T_{\text {right }}\right)$

Height $\mathrm{h}(\mathrm{T})$:
$h(\varnothing)=-1$
$\mathrm{h}(\mathrm{T})=\max \left\{\mathrm{h}\left(\mathrm{T}_{\mathrm{L}}\right), \mathrm{h}\left(\mathrm{T}_{\mathrm{R}}\right)\right\}+1$ if $\mathrm{T} \neq \varnothing$

Applying Master Theorem to Binary Tree Algorithms

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+1 \\
& \mathrm{a}=2, \mathrm{~b}=2, \mathrm{~d}=0, a>b^{d}, T(n) \in \Theta\left(n^{\log }{ }_{b}{ }^{a}\right)=\Theta\left(n^{\log }{ }_{2}{ }^{2}\right)=\Theta(n)
\end{aligned}
$$

MULTIPLICATION OF LARGE INTEGERS

Brute Force

Consider the problem of multiplying two (large) n-digit integers represented by arrays of their digits such as:

$$
A=12345678901357986429 \quad B=87654321284820912836
$$

The grade-school (brute-force) algorithm:

$$
\left.\begin{array}{rl}
a_{1} a_{2} \ldots & a_{n} \\
b_{1} b_{2} \ldots & b_{n} \\
\left(d_{10}\right) d_{11} d_{12} \ldots & d_{1 n} \\
\left(d_{20}\right) d_{21} d_{22} \ldots & d_{2 n} \\
\ldots \ldots . \ldots & \ldots
\end{array}\right]
$$

Efficiency: n^{2} one-digit multiplications

Divide and Conquer

A small example:
$\mathrm{A} * \mathrm{~B}$ where $\mathrm{A}=2135$ and $\mathrm{B}=4014$
$A=\left(21 \cdot 10^{2}+35\right), B=\left(40 \cdot 10^{2}+14\right)$
So, $\mathrm{A} * \mathrm{~B}=\left(21 \cdot 10^{2}+35\right) *\left(40 \cdot 10^{2}+14\right)$

$$
=21 * 40 \cdot 10^{4}+(21 * 14+35 * 40) \cdot 10^{2}+35 * 14
$$

In general, if $A=A_{1} A_{2}$ and $B=B_{1} B_{2}$ (where A and B are n-digit, $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{2}$ are $n / 2$-digit numbers),
$\mathrm{A} * \mathrm{~B}=\mathrm{A}_{1} * \mathrm{~B}_{1} \cdot 10^{n}+\left(\mathrm{A}_{1} * \mathrm{~B}_{2}+\mathrm{A}_{2} * \mathrm{~B}_{1}\right) \cdot 10^{n / 2}+\mathrm{A}_{2} * \mathrm{~B}_{2}$

Master Theorem
Recurrence for the number of one-digit multiplications M(n):
$\mathrm{M}(n)=4 \mathrm{M}(n / 2), \quad \mathrm{M}(1)=1$
$\mathrm{a}=4, \mathrm{~b}=2, \mathrm{~d}=0, a>b^{d}, T(n) \in \Theta\left(n^{\log b a}\right)=\Theta\left(n^{\log 24}\right)=\Theta\left(n^{2}\right)$

CLOSEST PAIR

- Step 1 Divide the points given into two subsets P_{l} and P_{r} by a vertical line $x=m$ so that half the points lie to the left or on the line and half the points lie to the right or on the line. ($\mathrm{m}=$ median of all the x coordinates)

- Step 2 Find recursively the closest pairs d_{l}, d_{r} for the left and right subsets.
- Step 3 Set $d=\min \left\{d_{l}, d_{r}\right\}$

We can now limit our attention to the points in the symmetric vertical strip S of width $2 d$ as possible closest pair. (The points are stored and processed in increasing order of their y coordinates.)

- Step 4 Scan the points in the vertical strip S from the lowest up.

For every point $p(x, y)$ in the strip, inspect points in the strip that may be closer to p than d. It has been proven that
There can be no more than 5 such points following p on the strip list!

Master Theorem

$$
\begin{aligned}
& \mathrm{T}(n)=2 \mathrm{~T}(n / 2)+\mathrm{M}(n), \text { where } \mathrm{M}(n) \in \mathrm{O}(n) \\
& a=2, b=2, d=1, \quad a=b^{d}, \mathrm{~T}(n) \in \mathrm{O}(n \log n)
\end{aligned}
$$

